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Abstract. The shortest paths of self-avoiding walks (SAW,) with bridge lengths b = 1, A, 
JS and 2 are studied by exact Series expansions and by Monte Carlo simulation methods 
on the square and simple cubic lattices. In the series work, SAW configurations of up to 
24 and 14 steps are generated on the square and simple cubic lattices respectively. Assuming 
the shortest path S, between two sites, which are separated by N steps along the chain, 
has the scaling form SN -AN+ EN‘.’, it is found that A = 1 and A - f  on the square and 
simple cubic lattices respectively, independent af the bridge length. The problem is also 
investigated by the Mellin-Pad& approximation method using Monte Carlo data on the 
square lattice. The latter method gives results consistent with those of the series expansion 
study. Our results are not consistent with earlier predictions. 

1. Introduction 

Self-avaiding walks  SAW^) continue to attract considerable research interest as model 
systems of both phase transitions and systems exhibiting interesting metric properties. 
A SAW configuration on the lattice is defined as a non-intersecting chain consisting of 
lattice sites connected by nearest-neighbour lattice bonds. It is generally accepted as 
a model for the study of the scaling properties of linear polymers in dilute solution 
111. In that model, the sites represent monomers and the bonds represent chemical 
bonds between monomer pairs. It is evident, however, that interactions are not confined 
only to these chemical bonds. Any two nearby monomers interact with each other. 
Hence, a better approximation to the real physical system is to connect pairs of sites 
in a SAW configuration with a weaker bond if the distance between them is within a 
certain range. These additional bonds are called ‘bridges’ by Helman et a /  [2]. They 
argued that the addition of bridges will change the scaling properties of the system. 
Subsequently, several authors studied different aspects of this ‘SAWS with bridges’ 
model [3], one of which is the shortest path [3-51. 

The shortest path between two points is defined as the minimum number of bonds 
or bridges required to connect them. For ordinary SAWS, the shortest path is just the 
chain length between these two points. The addition of bridges creates ‘short cuts’ and 
the shortest path becomes shorter than the chain length. If we think of the system as 
a kind of ‘blob and link‘ structure [3], that is, a finite fraction of the bonds still form 
a linear structure, then we expect S,/ N to approach a non-zero constant, where S, 
is the average length of the shortest path with N monomers. However, the problem 
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of the correction to leading order behaviour is still an open question. Earlier Monte 
Carlo simulations by Yang et a/ [31 suggested that the leading correction exponent in 
dimensionality d = 2-6 is superuniversal (independent of dimension). Subsequent work 
by Barat el al [41 claimed to find a similar result. However, we believe that the earlier 
work is not reliable because of an inappropriate method used to extract the exponent. 

The present paper is aimed at an extensive study of the problem by both longer 
series for the series expansion study, and a greater number of configurations as well 
as larger configuration sizes for the Monte Carlo study. 

2. Numerical simulations 

The SAW configurations are generated by the conventional back-tracking algorithm on 
two- and three-dimensional hypercubic lattices of unit lattice spacing. Pairs of sites 
within a Euclidean distance b are considered to be connected. For each SAW configur- 
ation, one of the end sites is labelled as ‘0’. The sites of the walk which are connected 
to the site ‘0’ are labelled ‘ I , ,  and the unlabelled sites of the walk which are connected 
to ‘1’-sites are labelled ‘2’, etc. From the definition of the shortest path, the label of a 
site is equal to the shortest path from that site to the origin. All SAW configurations 
are generated and the end-to-end shortest path of each configuration is accumulated 
to give S,C,. Here C, is the total number of  SAW^ of N bonds. The square lattice 
series and the simple cubic lattice series are tabulated in table 1 and table 2 respectively. 
Our b = 1 results for N S  18 on the square lattice and N S 11 on the simple cubic 

Table 1. Series coefficients for the shortest path of SAWS on square lattice 
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N b = l  b = J z  b = 2  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
I3 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

4 
24 
92 

336 
1132 
3 720 

1 I 684 
36384 

110028 
331 720 
979 276 

2 888 464 
8386412 

24 349 160 
69 835 548 

200 362 176 
569 268 356 

1618 172568 
4 563 244 964 

12 875 108 576 
36 086 945 324 

101 200051 112 
282 213 901 868 
787 411 392 176 

4 
16 
68 

232 
796 

2 528 
8 036 

24 520 
74 796 

222 400 
660 868 

I 929 944 
5 631 748 

I6 228 768 
46 730 860 

133 288 872 
379917092 

1074853312 
3039 122932 
8541661232 

23994293596 
67 070 070 848 

187391828604 

4 
I? 
64 

160 
676 

I732 
6 440 

16688 
57 620 

I50 580 
494 776 

I301 208 
4 126 100 

10 903 692 
33 663 256 
89 287 024 

269 997 636 
718 153 380 

2136075840 
5693969456 

I6 710 504 036 
44618212196 
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Table 2. Series coefficients for the shonest path of s ~ w r  on simple cubic lattice. 
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N h = l  b = f i  b = &  h=2 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 I3 

14 

6 
60 
402 

2 520 
14 SO2 
81 972 
444 930 

2 395 632 
12587214 
65 860 188 
339 003 810 

I 740 598 344 
8833 106358 
44751 148932 

6 
36 
282 

I488 
9 126 
47 676 
267 330 

1373 928 
7 358 862 
37 355 604 
194622 618 
978 491 232 

5005280574 
24972014172 

6 
36 
234 
I392 
7 830 
43 068 
230 898 
1221 768 
6 368 046 
32 922 276 
I68 490 842 
857 501 040 

4332475230 

6 
30 
228 
I188 
7 194 
36 858 
204 864 

1041 480 
5 530 638 
27 894 942 
144 240 036 
722056 260 

3669902898 

lattice are consistent with previously known data [4,5], though we have extended the 
square lattice and the simple cubic lattice series by six and three terms respectively. 

To analyse the series data, we first assume a power law correction to leading order, 

N + W .  (1) 
sN R = - - A + B N - "  

N -  N 

The parameters A, B and A can then be determined by the following set of simultaneous 
equations: 

R,_( = A + B ( N -  i ) - A  i = 0,2,4.  (2) 
Here we separate the even and odd N data to eliminate the oscillations characteristic 
of loose-packed lattices. The results for the square lattice and the simple cubic lattice 
are listed in table 3 for the best and worst cases, b = 1 and b = 2. Intermediate values 
of b give results which converged less rapidly than the case for b = 1 and more rapidly 
than for b = 2.  We eliminated A and B from successive pairs of equations, resulting 
in a single, non-linear equation which we solved for A by the bisection method, and 
then calculated A and B by back substitution. We conclude from table 3 that A = 0.9 kO.1 
and 0.45 * 0.1 on the square lattice and simple cubic lattice respectively. The exponent 
A appears to be a universal quantity for a given dimension. That is to say, it appears 
to be independent of the bridge length b. The leading term A decreases monotonically 
with increasing bridge length, as would be expected intuitively. The sub-dominant 
amplitude B also appears to decrease with increasing bridge length, and displays a 
trend to a distinct limit according as N is even or odd for b = 2. As we see from the 
b = 1 data, these estimates approach a common limit for N sufficiently large. Presumably 
this will also occur for the b = 2  data, but our series are too short to display this 
behaviour. All the numerical values are summarized in table 3.  

Barat et a1 have argued that a further correction term is necessary in equation (1) 
if the true asymptotic behaviour is to be seen. They have assumed the form 

R~ - A +  N - ~ ( B +  c / N ) .  (3) 
We argue that this is most unlikely to be correct. The dominant term A in (1) is not 
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going to be a pure constant, but at best an analytic function. In that case, the next 
correction term will be 0 ( 1 / N ) ,  not 0(1/ as assumed. If A (or E )  is not analytic, 
oiher correction terms will appear. 

These considerations then suggest that the simple, analytic assumption, A = 1 is 
appropriate for the square lattice data. For the simple cubic lattice, the corresponding 
analysis, shown in table 3, displays quite different behaviour, implying that A is around 
0.5. 

For the square lattice data, we next extrapoiated the sequence jRNj  by Neviiie- 
Aitken extrapolation to the odd and even sub-sequence independently, and also 
analysed the data by fitting successive alternative coefficients R,, RK->, RK-& and 
R,-6 to the form 

( 4 )  
where we expect A >  1. Neville-Aitken extrapolation (not shown) allows us to estimate 
A=0.677*0.004 for b = l ,  A=0.445+0.005 for b = a ,  A=0.283*0.005 for b = 2 .  
Attempts to estimate A from ( 4 )  were unsuccessful. However, in the light of the expected 
behaviour of ordinary SAWS in which the leading correction is analytic and the next 
correction has exponent 1.5 [6], it is plausible that the corresponding exponent A =  1.5 
also. If we make this assumption, successive triples of alternate coefficients R,, RK-2  

Compared with table 3, the estimates of A and E so obtained were better converged 
and do  not show the odd-even dependence of table 3 estimates-though estimates of 
C still display this feature. Extrapolating these results, we found for b = 1 that A = 

0.677zt0.003, B =  1.0+0.1, C =  1. The estimate of the leading amplitude A is in 
agreement with our earlier analysis above, and the fit is altogether more satisfactory. 

For the simple cubic data, Neville-Aitken extrapolation is inappropriate given the 
non-integral estimate of A. However, as A =f ,  and again we expect analytic corrections 
to ( l ) ,  we fitted successive alternative triples to 

R ,  - A +  BN-' + CN-" 

qnrl D . i in lA nrtimntnr nf A R 0-2 P f.*- I n )  
Y.IY ..K-4 J L C , "  I Y L . I I . P L I I  .,I r., Y Y.IU - .,U,,, \-,. 

R , - A + B N - ' / ~ + C N - ' .  ( 5 )  

Extrapolationoftheseresultsforb= 1gaveA=0.52*0.01,E=0.8*0.1, C =-0.4*0.2. 
Again; we find the fit to ( 5 )  altogether more satisfactory than the fit to ( 4 )  shown in 
table 3. 

In order to analyse the Monte Carlo data, the generation of wlich is discussed 
subsequently, we used a method derived by Yeramian and Claverie [7] and Claverie 
ef nl [8] based on Mellin-Pad6 transformations. We first note that as the shortest path 
length between two sites of a SAW configuration cannot exceed the chain length between 
them, we can write quite generally 

m 

RN - 1 D.N-*, (6) 

with D, = A ,  D2 = E, p, = 0, p2 = A, p; 3 0 and p j  <pLi+,. Aftertaking a Mellin transform 
[9, IO], equation (6) becomes: 

i=, 

(7)  
D. m 

I ? ( p ) - j ,  N p - ' R N d N - - x  - p < o .  
i - I P - P i  

Expanding R(p)  around po<O, we have 
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From the estimates of R,, the integral (9) is performed numerically to give estimates 
of E,(p , ) .  Given E,,(p,), we can get an expression for R ( p )  from (8), and from Pad6 
approximants [ l l ]  to the series (8) so derived, we estimate pj and D. from (7). 

integer values of N. The integrations in ( 9 )  cannot therefore be carried out exactly. 
Nevertheless, as R, becomes flat for large N and the scaling behaviour is determined 
by the large N limit, the error involved in taking the discrete values for R, is negligible 
for N + m. The small N error can be reduced by using standard numerical integration 
methods such as Simpson's rule [12]. 

The leading contribution to the integration in (9) is the term in RN with the smallest 
exponent. Hence, E , ( p o )  can be approximated by 

In the iiumeiica; calcu;atigii, however, .we cBfi gei the vaiues of RN at finiie 

Here A+ 2 A is a constant. 
The Monte Carlo data were generated using the constant fugacity Monte Cario 

enumeration method [13]. For b = 1 ,  we generated 25 000 000 SAW configurations of 
300 steps on the 600x 600 square lattice. The shortest path is calculated with the same 
site labelling method as that for the series expansion. To get better statistics, we labelled 
the middle site, i.e., the ISOth, site as 0. Take No= 150 and A + = ( A +  R,50)/2, where 
A=0.677 from the series result, and the coefficients E.(po) are calculated for p o =  
[-6, -31. The Pad6 approximation estimates of E, calculated as above were consistent 
with the series expansion predictions, although with larger error bars. The Mellin-Pad6 
analysis to the shortest path of the SAW% with b = and 2 on the square lattice gave 
similar results. An alternative, simpler analysis in which we fitted the Monte Carlo 
data to (1) was inconclusive. 

3. Discussion 

In this paper, we have studied the correction to scaling of the shortest path on the 
 SAW^ with bridges' model by extensive numerical simulation. The results we get in the 
present study are consistent using different methods of numerical analysis, but are not 
consistent with earlier studies. We argue that the inconsistency results from inappropri- 
ate methods used in earlier works. 

We find indeed that, in two dimensions, the leading correction exponent is likely 
to be analytic, while in three dimensions it is near f .  This is similar to the correction-to- 
scaling behaviour of ordinary self-avoiding walks. 
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